Get help now
  • Pages 6
  • Words 1304
  • Views 463
  • Download

    Cite

    Shana
    Verified writer
    Rating
    • rating star
    • rating star
    • rating star
    • rating star
    • rating star
    • 4.7/5
    Delivery result 5 hours
    Customers reviews 624
    Hire Writer
    +123 relevant experts are online

    Ecology Essay

    Academic anxiety?

    Get original paper in 3 hours and nail the task

    Get help now

    124 experts online

    ECOLOGY In the original Greek “oikos” means, “house”. So ecology is “the study of the house” the place where you live, or the environment which technically includes all those factors, both nonliving and living, that affect an organism. Ecology then is the study of the interactions of organisms in their environment includes both the living (biotic) and physical (abiotic) factors of the environment.

    It’s also the science, which formulates and tests hypotheses about environment. Ecology is the relationships, identification and analysis of problems common to all areas. Ecology studies the population and the community, evaluates cause and effects of the responses of populations and communities to environmental change. POPULATIONS The population is defined as an assemblage of individuals of a single species that live in the same place at the same time.

    Also, biologists add an additional condition: the individuals in a population must interact with each other to the point of being able to interbreed. Population is important to understanding many important ecological and evolutionary phenomena. Ecologists can use information from population ecology to predict the success of a given species or assemblage of species. One attribute of populations that is observed in nature is their dispersion, or the way in which individuals are distributed in a given area. Typically, biologists refer to three types of dispersion: – Clustered (aggregated), Regular (evenly spaced), Random (irregularly spaced) Populations showing a clustered pattern are common in nature and are found among many different types of organisms. Clustered dispersion patterns are often due to environment heterogeneity.

    Regular dispersion patterns are relatively rare in nature and occur when a resource is scarce. A good example of regular spacing occurs in animals that exhibit territoriality, a phenomenon in which animals establish an area for themselves and fight off all other individual seeking to invade that area. Regular dispersion patterns can also be observed in plants. Random patterns can be found in a variety of organisms (trout in lake or maple trees in a forest). Regardless of which organisms, the number of births almost always has the potential to be greater than the number of deaths. In other words populations of all species have the capacity to grow.

    That property is crucial importance to the success of all species. However, all species will not increase under all circumstance, but instead they can, given appropriate conditions. There are two models of population growth: the exponential model and the logistic model. One of the most basic models of population biology is the exponential growth equation, which is: )N/)t = rmaxN This equation states that, in a growing population, the rate of change in population size is determined by the maximal intrinsic rate of increase (rmax) multiplied by the number of individuals in that population (N). If a population growth very quickly we called that an exponential increase and its growth curve has a J-chaped called J-chaped curve.

    A population cannot continue to grow indefinitely because this equation contains additional term called the carrying capacity (K) which is not fixed, but carrying capacity is constantly affected by many factors, both biotic (living) and abiotic (non-living). The logistic population growth predicts that populations will grow rapidly at first. However, as the number of individuals in the population (N) approaches the carrying capacity (K), the population growth rate eventually slows to zero, and the population stabilize at K. The result is a sigmoidal or S-shaped curve which is often divided into three phases: the first is called the lag phase (the period of slow growth that occurs when population numbers are low). The second is the log phase, which occurs when growth rate accelerates and becomes relatively rapid.

    The third is the saturation phase, during which population growth decelerates as N approaches K. All species have a well-defined life history that involves a beginning of life, a juvenile and reproductive phase and death. There are two important parameters of a population: survivorship (how long one live) and fecundity (how many offspring one leaves). Survivorship is the number still living at the beginning of each age interval. The number of deaths determines the death rate during a given period of time divided by the number still living at the beginning of the time period. COMMUNITIES A community is an assemblage of populations that interact with one another and the effects that they have on each other often greatly influence their ability to survive and reproduce.

    Because they are assemblages of different species, communities have properties that make them unique from individual organisms and populations. Some communities simply blend gradually into others and for this reason are called open comments, forest communities are like that, as different vegetable types blend together. Conversely, closed communities have more definite borders; few organisms pass from one community to another. In these types of communities, fewer organisms move in and out, so they are more isolated in terms of energy and nutrients.

    Despite the fact that communities can sometimes be difficult to define, ecologists have been able to identify a lot of attributes by which communities can be described and analyzed. These include – Species composition which is the most fundamental attribute of a community. It’s simply a list of species of which the community is comprised. Communities vary tremendously in their composition. – Frequency is a measure of how often we find a species in a community.

    – Distribution, or how species are arranged in a community – Diversity is a measure of the variation in a community, has two components. The first is richness, which is the number of species in the community. The second component is called evenness, which is the degree to which the different species are represented in a community. – Stability is the concept of the ability of a community to handle disturbance or to resist being disturbed.

    It also can refer to resilience of a community (that is, its ability to recover quickly from a disturbance. Certain communities can be called “fragile’ which is used to refer to communities that have low stability when faced with human disturbance. Competition involves a struggle for limited resource. Exploitative competition is the use of the same resources in which one competitor has greater access than the other to the resources is.

    Interference competition is actual fighting over resources. Intraspecific competition is between members of the same species and interspecific competition is between different species. The competition exclusion principle is that no two species can occupy the same niche at the same time. Because the niche of an organism (the way in which it interacts with its environment) is often dependent on how it fares in competition with its neighbors, both kind of competition is important in the structure of the community.

    BIOMES Biome is defined as large, distinct and recognizable associations of life. More precisely, a biome is a particular array of plants and animals within a geographic area brought about by distinctive climatic conditions. Their plant associations than those of animals, not only usually identify biomes more because the first is far more obvious, but also because it determines the second. Ecologists recognize about a dozen major biomes, each one forms under a certain prevailing climate and has a characteristic type of plant and animal life.

    Some examples of biomes include grassland, deserts, and deciduous forests. Biomes may be subdivided into communities. CONCLUSION For this paper, I read a lot of books and did a lot of research on Internet. I learned a lot about ecology, population, communities and biomes. It’s very hard to write about this subject in only five pages. My first draft was constituted of eight pages so I cut a lot of details.

    However, I pass a lot of time to do this paper and energy and I really enjoyed it. I hope it will be the same for you Bibliography:

    This essay was written by a fellow student. You may use it as a guide or sample for writing your own paper, but remember to cite it correctly. Don’t submit it as your own as it will be considered plagiarism.

    Need custom essay sample written special for your assignment?

    Choose skilled expert on your subject and get original paper with free plagiarism report

    Order custom paper Without paying upfront

    Ecology Essay. (2019, Jan 24). Retrieved from https://artscolumbia.org/ecology-essay-74017/

    We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

    Hi, my name is Amy 👋

    In case you can't find a relevant example, our professional writers are ready to help you write a unique paper. Just talk to our smart assistant Amy and she'll connect you with the best match.

    Get help with your paper