Get help now
  • Pages 10
  • Words 2278
  • Views 527
  • Download

    Cite

    Terra
    Verified writer
    Rating
    • rating star
    • rating star
    • rating star
    • rating star
    • rating star
    • 4.8/5
    Delivery result 3 hours
    Customers reviews 387
    Hire Writer
    +123 relevant experts are online

    Science Is A Source That Continues To Radically Improve The State Of M Essay

    Academic anxiety?

    Get original paper in 3 hours and nail the task

    Get help now

    124 experts online

    ankind. It has allowed for advances in production, transportation, and even entertainment, but never in history will science be able to so deeply affect our lives, as genetic engineering will certainly do. Genetic engineering is a safe and powerful tool that will bring forth amazing results, specifically in the field of medicine.

    It will bring in a world where gene defects, bacterial disease, and even aging are a thing of the past. The new science of genetic engineering aims to take a dramatic short cut in the slow process of evolution (Stableford 25). In essence, scientists aim to remove one gene from an organism’s DNA, and place it into the DNA of another organism. This would create a new DNA strand, full of new encoded instructions; a strand that would have taken Mother Nature millions of years of natural selection to develop. The possibilities of genetic engineering are endless.

    Once the power to control the instructions, given to a single cell, are mastered anything can be accomplished. For example, insulin can be created and grown in large quantities by using an inexpensive gene manipulation method of growing a certain bacteria. This supply of insulin is also not dependant on the supply of pancreatic tissue from animals. Recombinant factor VIII, the blood clotting agent missing in people suffering from hemophilia, can also be created by genetic engineering.

    Virtually all people who were treated with factor VIII before 1985 acquired HIV, and later AIDS. Being completely pure, the bioengineered version of factor VIII eliminates any possibility of viral infection. Other uses of genetic engineering include creating disease resistant crops, formulating milk from cows already containing pharmaceutical compounds, generating vaccines, and altering livestock traits (Clarke 1). In the not so distant future, genetic engineering will become a principal player in fighting genetic, bacterial, and viral disease, along with controlling aging, and providing replaceable parts for humans.

    Medicine has seen many new innovations in its history. The discovery of anesthetics permitted the birth of modern surgery, while the production of antibiotics in the 1920s minimized the threat from diseases such as pneumonia, tuberculosis and cholera. The creation of serums which build up the bodies immune system to specific infections, before being laid low with them, has also enhanced modern medicine greatly (Stableford 59). All of these discoveries however, will fall under the broad shadow of genetic engineering when it reaches its peak in the medical community.

    Many people suffer from genetic diseases ranging from thousands of types of cancers, to blood, liver, and lung disorders. Amazingly, all of these will be able to be treated by Genetic engineering, specifically, gene therapy. The basis of gene therapy is to supply a functional gene to cells lacking that particular function, thus correcting the genetic disorder or disease. There are two main categories of gene therapy: germ line therapy, or altering of sperm and egg cells, and somatic cell therapy, which is much like an organ transplant. Germ line therapy results in a permanent change for the entire organism, and its future offspring.

    Germ line therapy is not readily in use on humans for ethical reasons. However, this genetic method could, in the future, solve many genetic birth defects such as downs syndrome. Somatic cell therapy deals with the direct treatment of living tissues. Scientists, in a lab, inject the tissues with the correct, functioning gene and then re-administer them to the patient, correcting the problem (Clarke 1). Along with altering the cells of living tissues, genetic engineering has also proven extremely helpful in the alteration of bacterial genes. Transforming bacterial cells is easier than transforming the cells of complex organisms (Stableford 34).

    Two reasons are evident for this manipulation: DNA enters, and functions easily in bacteria, and the transformed bacteria cells can be easily selected out from the untransformed ones. Bacterial bioengineering has many uses in our society, it can produce synthetic insulins, a growth hormone for the treatment of dwarfism and interferons for treatment of cancers and viral diseases (Stableford 34). Throughout the centuries disease has plagued the world, forcing everyone to take part in a virtual lottery with the agents of death (Stableford 59). Whether viral or bacterial in nature, such diseases are currently combated with the application of vaccines and antibiotics. These treatments, however, contain many unsolved problems.

    The difficulty with applying antibiotics to destroy bacteria is that natural selection allows for the mutation of bacteria cells, sometimes resulting in mutant bacterium, which is resistant to a particular antibiotic. This now indestructible bacterial epidemic wages havoc on the human body. Genetic engineering is conquering this medical dilemma by utilizing diseases that target bacterial organisms. These diseases are viruses, named bacteriophages, which can be produced to attack specific disease-causing bacteria (Stableford 61). Much success has already been obtained by treating animals with a phage designed to attack the E coli bacteria (Stableford 60).

    Diseases caused by viruses are much more difficult to control than those caused by bacteria. Viruses are not whole organisms, as bacteria are, and reproduce by hijacking the mechanisms of other cells. Thus, any treatment designed to stop the virus itself, will also stop the functioning of its host cell. A virus invades a host cell by piercing it at a site called a receptor. Upon attachment, the virus injects its DNA into the cell, coding it to reproduce more of the virus. After the virus is replicated millions of times over, the cell bursts and the new viruses are released to continue the cycle.

    The body’s natural defense against such cell invasion is to release certain proteins, called antigens, which plug up the receptor sites on healthy cells. This causes the foreign virus to not have a docking point on the cell. This process, however, is slow and not effective against a new viral attack. Genetic engineering is improving the body’s defenses by creating pure antigens, or antibodies, in the lab for injection upon infection with a viral disease.

    This pure, concentrated antibody halts the symptoms of such a disease until the bodies natural defenses catch up. Future procedures may alter the very DNA of human cells, causing them to produce interferons. These interferons would allow the cell to be able determine if a foreign body bonding with it is healthy or a virus. In effect, every cell would be able to recognize every type of virus and be immune to them all (Stableford 61). Current medical capabilities allow for the transplant of human organs, and even mechanical portions of some, such as the battery powered pacemaker. Current science can even re-apply fingers after they have been cut off in accidents, or attach synthetic arms and legs to allow patients to function normally in society.

    But would not it be incredibly convenient if the human body could simply re-grow what it needed, such as a new kidney or arm? Genetic engineering can make this a reality. Certain types of salamanders can re-grow lost limbs, and some lizards can shed their tails when attacked and later grow them again. Evidence of regeneration is all around and the science of genetic engineering is slowly mastering its techniques. Regeneration in mammals is essentially a kind of controlled cancer, called ablastema. The cancer is deliberately formed at the regeneration site and then converted into a structure of functional tissues.

    But before controlling the blastema is possible, a detailed knowledge of the switching process by means of which the genes in the cell nucleus are selectively activated and deactivated is needed (Stableford 90). To obtain proof that such a procedure is possible one only needs to examine an early embryo and realize that it knows whether to turn itself into an ostrich or a human. After learning the procedure to control and activate such regeneration, genetic engineering will be able to conquer such diseases as Parkinson’s, Alzheimer’s, and other crippling diseases without grafting in new tissues. The broader scope of this technique would allow the re-growth of lost limbs, repairing any damaged organs internally, and the production of spare organs by growing them externally (Stableford90). Ever since biblical times the life span of a human being has been roughly at 70 years. But is this number truly measurable? In order to uncover the answer, knowledge of the process of aging is needed.

    A common conception is that the human body contains an internal biological clock which continues to tick for about 70 years, then stops. An alternate watch analogy could be that the human body contains a certain type of alarm clock, and after so many years, the alarm sounds and deterioration beings. With that frame of thinking, the human body does not begin to age until a particular switch is tripped. In essence, stopping this process would simply involve a means of never allowing the switch to be tripped. W. Donner Denckla, of the Roche Institute of Molecular Biology, proposes the alarm clock theory is true.

    He provides evidence for this statement by examining the similarities between normal aging and the symptoms of a hormonal deficiency disease associated with the thyroid gland. Denckla proposes that as we get older the pituitary gland begins to produce a hormone which blocks the actions of the thyroid hormone, thus causing the body to age and eventually die. If Denckla’s theory is correct, conquering aging would simply be a process of altering the pituitary’s DNA so it would never be allowed to release the aging hormone. In the years to come, genetic engineering may finally defeat the most unbeatable enemy in the world, time (Stableford 94).

    The morale and safety questions surrounding genetic engineering currently cause this new science to be cast in a false light. Anti-technologists and political extremists spread false interpretation of facts coupled with statements that genetic engineering is not natural and defies the natural order of things. The morale question of biotechnology can be answered by studying where the evolution of man is, and where it is leading our society. The safety question can be answered by examining current safety precautions in industry, and past safety records of many bioengineering projects already in place.

    The evolution of man can be broken up into three basic stages. The first, lasting millions of years, slowly shaped human nature from Homo erectus to Homo sapiens. Natural selection provided the means for countless random mutations resulting in the appearance of such human characteristics as hands and feet. The second stage, after the full development of the human body and mind, saw humans moving from wild foragers to an agriculture based society.

    Natural selection received a helping hand as man took advantage of random mutations in nature and bred more productive species of plants and animals. The most plentiful wheat’s were collected and re-planted, and the fastest horses were bred with equally faster horses. Even in our recent history the strongest black male slaves were mated with the hardest working female slaves. The third stage, still developing today, will not require the chance of super-mutations in nature.

    Man will be able to create such super-species without the strict limitations imposed by natural selection. By examining the natural slope of this evolution, the third stage is a natural and inevitable plateau that man will achieve (Stableford 8). This control of our world may seem completely foreign, but the thought of the Egyptians erecting vast pyramids would have seem strange to Homo erectus as well. Many claim genetic engineering will cause unseen disasters spiraling our world into chaotic darkness. However, few realize that many safety nets regarding bioengineering are already in effect.

    The Recombinant DNA Advisory Committee (RAC) was formed under the National Institute of Health to provide guidelines for research on engineered bacteria for industrial use. The RAC has also set very restrictive guidelines requiring Federal approval if research involves pathogenicity (the rare ability of a microbe to cause disease) (Davis, Roche69). It is well established that most natural bacteria do not cause disease. After many years of experimentation, microbiologists have demonstrated that they can engineer bacteria that are just as safe as their natural counter parts (Davis, Rouche 70).

    In fact the RAC reports that there has not been a single case of illness or harm caused by engineered bacteria, and they now are used safely in high school experiments (Davis, Rouche 69). Scientists have also devised other methods of preventing bacteria from escaping their labs, such as modifying the bacteria so that it will die if it is removed from the laboratory environment. This creates a shield of complete safety for the outside world. It is also thought that if such bacteria were to escape it would act like smallpox or anthrax and damage the land.

    However, laboratory-created organisms are not as competitive as pathogens. Fear of the unknown has slowed the progress of many scientific discoveries in the past. The thought of man flying or stepping on the moon did not come easy to the average citizens of the world. But the facts remains, they were accepted and are now an everyday occurrence in our lives. Genetic engineering too is in its period of fear and misunderstanding, but like every great discovery in history, it will enjoy its time of realization and come into full use in society.

    The world is on the brink of the most exciting step into human evolution ever, and through knowledge and exploration, we should welcome it and all its possibilities. BibliographyWorks Cited Clarke, Bryan C. Genetic Engineering. MicrosoftEncarta.

    Microsoft Corporation, Funk & Wagnalls Corporation, 1994. Davis, Bernard, and Lissa Roche. Sorcerer’s Apprentice or Handmaidento Humanity. USA TODAY: The Magazine of the American Scene [GUSA] 118Nov 1989: 68-70. Lewin, Seymour Z. Nucleic Acids.

    Microsoft Encarta. Microsoft Corporation, Funk ; Wagnalls Corporation, 1994. Stableford, Brian. Future Man.

    New York: Crown Publishers, Inc. , 1984. Thompson, Dick. The Most Hated Man in Science. Time 23 Dec 4 1989:102-104

    This essay was written by a fellow student. You may use it as a guide or sample for writing your own paper, but remember to cite it correctly. Don’t submit it as your own as it will be considered plagiarism.

    Need custom essay sample written special for your assignment?

    Choose skilled expert on your subject and get original paper with free plagiarism report

    Order custom paper Without paying upfront

    Science Is A Source That Continues To Radically Improve The State Of M Essay. (2019, Jan 02). Retrieved from https://artscolumbia.org/science-is-a-source-that-continues-to-radically-improve-the-state-of-m-64053/

    We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

    Hi, my name is Amy 👋

    In case you can't find a relevant example, our professional writers are ready to help you write a unique paper. Just talk to our smart assistant Amy and she'll connect you with the best match.

    Get help with your paper