The Effects of HIV Mutations on the Immune System is deadly. HIV is the virus that causes AIDS. HIV is classified as a RNA Retrovirus.
A retrovirus uses RNA templates to produce DNA. For example, within the core of HIV is a double molecule of ribonucleic acid, RNA. When the virus invades a cell, this genetic material is replicated in the form of DNA. But, in order to do so, HIV must first be able to produce a particular Enzyme that can construct a DNA molecule using an RNA template. This enzyme, Called RNA-directed DNA polymerase, is also referred to as reverse Transcriptase because it reverses the normal cellular process of Transcription.
The DNA molecules produced by reverse transcription are then Inserted into the genetic material of the host cell, where they are Co-replicated with the host’s chromosomes; they are thereby distributed to All daughter cells during subsequent cell divisions. Then in one or more of these daughter cells, the virus produces RNA copies of its genetic material. These new HIV clones become covered with protein coats and leave the cell to find other host cells where they can repeat the life cycle. The Body Fights Back As viruses begin to invade the body, a few are consumed by macrophages, which seize their antigens and display them on their own surfaces.
Among millions of helper T cells circulating in the bloodstream, a select few are programmed to read that antigen. Binding the macrophage, the T cell becomes activated. Once activated, helper T cells begin to multiply. They then stimulate the multiplication of those few killer T cells and B cells that are sensitive to the invading viruses. As the number of B cells increases, helper T cells signal them to start producing antibodies.
Meanwhile, some of the viruses have entered cells of the body – the only place they are able to replicate. Killer T cells will sacrifice these cells by chemically puncturing their membranes, letting the contents spill out, thus disrupting the viral replication cycle. Antibodies then neutralize the viruses by binding directly to their surfaces, preventing them from attacking other cells. Additionally, they precipitate chemical reactions that actually destroy the infected cells. As the infection is contained, suppresser T cells halt the entire range of immune responses, preventing them from spiraling out of control. Memory T and B cells are left in the blood and lymphatic system, ready to move quickly should the same virus once again invade the body.
HIV’s Life Cycle is in the initial stage of HIV infection, the virus colonizes helper T cells, specifically CD4+ cells, and macrophages, while replicating itself relatively unnoticed. As the amount of the virus soars, the number of helper cells falls; macrophages die as well. The infected T cells perish as thousands of new viral particles erupt from the cell membrane. Soon, though, cytotoxic T And B-lymphocytes kill many virus-infected cells and viral particles. These Effects limit viral growth and allow the body an opportunity to temporarilyRestore its supply of helper cells to almost normal concentrations.
It is atThis time the virus enters its second stage. Throughout this second phase the immune system functions well, and the net Concentration of measurable virus remains relatively low. But after a period of time, the viral level rises gradually, in parallel with a decline in the Helper population. These helper T and B lymphocytes are not lost because the Body’s ability to produce new helper cells is impaired, but because the virus And cytotoxic cells are destroying them. This idea that HIV is not just Evading the immune system but attacking and disabling it is what Distinguishes HIV from other retroviruses.
Evolutionary Theory The evolutionary theory states that chance mutation in the genetic material of an individual organism sometimes yields a trait that gives the organism a Survival advantage. That is, the affected individual is better able than its Peers to overcome obstacles to survival and is also better able to reproduce Prolifically. As time goes by, offspring that shares the same trait become most abundant in the population, out competing other members until another Individual acquires a more adaptive trait or until environmental conditions Change in a way that favors different characteristics. The pressures exerted