We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

The Effects Of Hiv Mutations On The Immune System Essay

INTRODUCTION

The topic of this paper is the human immunodeficiency virus, HIV, and

whether or not mutations undergone by the virus allow it to survive in the

We will write a custom essay on The Effects Of Hiv Mutations On The Immune System specifically for you
for only $16.38 $13.9/page

Order now

immune system. The cost of treating all persons with AIDS in 1993 in the

United States was $7.8 billion, and it is estimated that 20,000 new cases of

AIDS are reported every 3 months to the CDC. This question dealing with how

HIV survives in the immune system is of critical importance, not only in the

search for a cure for the virus and its inevitable syndrome, AIDS (Acquired

Immunodeficiency Syndrome), but also so that over 500,000 Americans already

infected with the virus could be saved. This is possible because if we know

that HIV survives through mutations then we might be able to come up with a

type of drug to retard these mutations allowing the immune system time to

expunge it before the onset of AIDS.

BACKGROUND

In order to be able to fully comprehend and analyze this question we must

first ascertain what HIV is, how the body attempts to counter the effects of

viruses in general, and how HIV infects the body.

Definition

HIV is the virus that causes AIDS. HIV is classified as a RNA Retrovirus.

A retrovirus uses RNA templates to produce DNA. For example, within the

core of HIV is a double molecule of ribonucleic acid, RNA. When the virus

invades a cell, this genetic material is replicated in the form of DNA .

But, in order to do so, HIV must first be able to produce a particular

enzyme that can construct a DNA molecule using an RNA template. This enzyme,

called RNA-directed DNA polymerase, is also referred to as reverse

transcriptase because it reverses the normal cellular process of

transcription. The DNA molecules produced by reverse transcription are then

inserted into the genetic material of the host cell, where they are

co-replicated with the host’s chromosomes; they are thereby distributed to

all daughter cells during subsequent cell divisions. Then in one or more of

these daughter cells, the virus produces RNA copies of its genetic material.

These new HIV clones become covered with protein coats and leave the cell to

find other host cells where they can repeat the life cycle.

The Body Fights Back

As viruses begin to invade the body, a few are consumed by macrophages,

which seize their antigens and display them on their own surfaces.

Among

millions of helper T cells circulating in the bloodstream, a select few are

programmed to “read” that antigen. Binding the macrophage, the T cell

becomes activated. Once activated, helper T cells begin to multiply. They

then stimulate the multiplication of those few killer T cells and B cells

that are sensitive to the invading viruses. As the number of B cells

increases, helper T cells signal them to start producing antibodies.

Meanwhile, some of the viruses have entered cells of the body – the only

place they are able to replicate.

Killer T cells will sacrifice these cells

by chemically puncturing their membranes, letting the contents spill out,

thus disrupting the viral replication cycle. Antibodies then neutralize the

viruses by binding directly to their surfaces, preventing them from attacking

other cells. Additionally, they precipitate chemical reactions that actually

destroy the infected cells. As the infection is contained, suppresser T

cells halt the entire range of immune responses, preventing them from

spiraling out of control. Memory T and B cells are left in the blood and

lymphatic system, ready to move quickly should the same virus once again

invade the body.

HIV’s Life Cycle

READ:  Artificial Intelligence(research) Essay

In the initial stage of HIV infection, the virus colonizes helper T cells,

specifically CD4+ cells, and macrophages, while replicating itself relatively

unnoticed.

As the amount of the virus soars, the number of helper cells

falls; macrophages die as well. The infected T cells perish as thousands of

new viral particles erupt from the cell membrane. Soon, though, cytotoxic T

and B lymphocytes kill many virus-infected cells and viral particles. These

effects limit viral growth and allow the body an opportunity to temporarily

restore its supply of helper cells to almost normal concentrations. It is at

this time the virus enters its second stage.

Throughout this second phase the immune system functions well, and the net

concentration of measurable virus remains relatively low.

But after a period

of time, the viral level rises gradually, in parallel with a decline in the

helper population. These helper T and B lymphocytes are not lost because the

body’s ability to produce new helper .

Choose Type of service

Choose writer quality

Page count

1 page 275 words

Deadline

Order Essay Writing

$13.9 Order Now
icon Get your custom essay sample
icon
Sara from Artscolumbia

Hi there, would you like to get such an essay? How about receiving a customized one?
Check it out goo.gl/Crty7Tt

The Effects Of Hiv Mutations On The Immune System Essay
Artscolumbia
Artscolumbia

INTRODUCTION The topic of this paper is the human immunodeficiency virus, HIV, and whether or not mutations undergone by the virus allow it to survive in the immune system. The cost of treating all persons with AIDS in 1993 in the United States was $7.8 billion, and it is estimated that 20,000 new cases of AIDS are reported every 3 months to the CDC. This question dealing with how HIV survives in the immune system is of critical importance, not only in the search for

2019-02-12 07:57:46
The Effects Of Hiv Mutations On The Immune System Essay
$ 13.900 2018-12-31
artscolumbia.org
In stock
Rated 5/5 based on 1 customer reviews